Thermally reduced graphite oxide as positive electrode in vanadium redox flow batteries

نویسندگان

  • Zoraida González
  • Cristina Botas
  • Patricia Álvarez
  • Silvia Roldán
  • Clara Blanco
  • Ricardo Santamaría
  • Marcos Granda
  • Rosa Menéndez
چکیده

Two graphene-like materials, obtained by thermal exfoliation and reduction of a graphite oxide at 700 and 1000oC, were studied as active electrodes in the positive half-cell of a Vanadium Redox Flow Battery (VRFB). In particular, that obtained at 1000oC exhibited an outstanding electrochemical performance in terms of peak current densities (30.54 and 30.05 mAcm for the anodic and cathodic peaks at 1 mVs, respectively) and reversibility (ΔEp = 0.07 V). This excellent bahaviour is attributed to the restoration of sp domains after thermal treatment, which implies the production of a graphene-like material with a high electrical conductivity and accessible surface area. Moreover, the residual functional groups, -OH, act as active sites towards the vanadium redox reactions. This represents a significant step forward in the development of highly effective VRFB electrode materials. ∗ Corresponding author: Fax: +34 985 29 76 62. E-mail address: [email protected] (C. Blanco)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphite oxide - based graphene materials as positive electrodes in vanadium redox flow batteries

Two graphene materials, TRGO-1 and TRGO-2, prepared by the thermal exfoliation/reduction at 1000oC of two graphite oxides with different characteristics, are investigated as positive electrodes in a Vanadium Redox Flow Battery (VRFB). A detailed study of their electrochemical response towards the [VO2]/[VO] redox system is carried out through cyclic voltammetry, electrochemical impedance spectr...

متن کامل

Investigation of Hydroxylated Carbon Felt Electrode in Vanadium Redox Flow Battery by Using Optimized Supporting Electrolyte

Traditional vanadium batteries use pure sulfuric acid as electrolyte, but H2SO4 does not absorb enough vanadium ions to make the electrolyte an efficient energy source. This study investigates the effect of hydroxylation process on electrochemical and operational properties of carbon felt electrode in VOSO4 solution with an optimized supporting electrolyte (a mixture of six parts HCl and 2.5 pa...

متن کامل

A Numerical Simulation of Vanadium Redox Flow Batteries

The recent penetration of renewable sources in the energy system caused a transformation of the needs of the distribution system and amplified the need of energy storage systems to properly balance the electricity grid. Among electrochemical energy storage devices, all vanadium flow batteries are those of the most promising technologies due to their high efficiency, long lifetime, reliability a...

متن کامل

Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries.

A new approach for enhancing the electrochemical performance of carbon felt electrodes by employing non-precious metal oxides is designed. The outstanding electro-catalytic activity and mechanical stability of Mn(3)O(4) are advantageous in facilitating the redox reaction of vanadium ions, leading to efficient operation of a vanadium redox flow battery.

متن کامل

Enhanced performance of a Bi - modified graphite felt as the positive electrode of a vanadium redox flow battery

Graphite felt modified with nanodispersed bismuth was studied as electrode in the positive half-cell of a vanadium redox flow battery (VRFB). The felt was easily modified by immersion in a Bi2O3 solution followed by thermal reduction at 450°C in air. Despite the low metal content (1 at. %), the Bi-modified felt showed an excellent electrochemical performance (at 1 mVs) in terms of anodic and ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013